SOLVABILITY OF THE $\bar{\partial}$ PROBLEM WITH C^{∞} REGULARITY UP TO THE BOUNDARY ON WEDGES OF \mathbb{C}^N

BY

GIUSEPPE ZAMPIERI

v. Miglioranza 20, Vicenza, Italy e-mail: Zampieri@math.unipd.it

ABSTRACT

For a wedge W of \mathbb{C}^N , we introduce an intrinsic condition of weak q-pseudoconvexity which can be expressed in terms of q-subharmonicity both of a defining function or an exhaustion function. Under this condition we prove solvability of the $\bar{\partial}$ system for forms with $C^{\infty}(\bar{W})$ -coefficients of degree $\geq q+1$. Our method relies on the L^2 -estimates by Hörmander. For $C^{\infty}(W)$ solvability we refer to Hörmander (if $\partial W \in C^2$), and to Zampieri (for general wedges W). For $C^{\infty}(\bar{W})$ solvability and with $\partial W \in C^2$, we refer to Dufresnoy (if q=0), Michel (if the number of negative Levieigenvalues of ∂W is constant), and finally Zampieri (for more general q-pseudoconvexity).

1. a-pseudoconvexity of wedges

Let W_i , $i=1,\ldots,m$, be C^2 half-spaces in a neighborhood of a point z_o and let W be the "wedge" defined by $W=\bigcap_i W_i$. We denote by M_i the hypersurfaces $M_i=\partial W_i$, by \hat{M}_i the "faces" $\hat{M}_i=M_i\cap\partial W_i$ and also set

$$R = \{z \in M_i \cap M_i \text{ for some } i \neq j\}$$
 and $\hat{R} = R \cap \partial W$.

We suppose that the M_i 's intersect transversally and that $\bigcap_{i=1}^m M_i$ is "generic". We take equations $r_i = 0$ for the M_i 's (with the W_i 's defined by $r_i < 0$) and define the Levi form of the function r_i (resp. of the hypersurface M_i) by $\bar{\partial}\partial r_i$ (resp. $\bar{\partial}\partial r_i|_{\partial r_i^{\perp}}$). Here " \perp " denotes the complex orthogonal. We now formulate our main assumption. For an orthonormal system of (1,0)-forms $\{\omega'\} = \{\omega_1,\ldots,\omega_q\}$ on ∂W in a neighborhood U of z_o , with $\mathrm{Span}\{\partial_{\omega'}\}|_{\hat{M}_i} \subset T^{(1,0)}M_i \ \forall i$, which is

 $C^0(\partial W) \cap C^2(\partial W \setminus R)$ with bounded first and second derivatives, we have on ∂W :

(1.1) Span
$$\{\partial_{\omega'}\}$$
 is a q -space of minimal trace for $\bar{\partial}\partial r_i|_{\partial r_i^{\perp}}$ and $\bar{\partial}\partial r_i|_{\{\omega',\partial r_i\}^{\perp}} \geq 0$.

Let $\mu_i^1 \leq \mu_i^2 \leq \cdots$ be the eigenvalues of $\bar{\partial} \partial r_i|_{\partial r_i^{\perp}}$. Then (1.1) means that $\operatorname{Span}\{\partial_{\omega'}\}$ is engendred by q eigenvectors with eigenvalues μ_1, \ldots, μ_q and that $\mu_{q+1} \geq 0$. Another condition equivalent to (1.1) is that for an orthonormal completion $\{\partial_{\omega''}\}$ of $\{\partial_{\omega'}\}$ on each complex bundle $T^{(1,0)}M_i|_{\hat{M}_i}$, we have in a neighborhood U of z_o :

(1.2)
$$\bar{\partial}' \partial'' r_i(z) = 0, \quad \bar{\partial}' \partial' r_i(z) (\bar{w}', w') \le \bar{\partial}'' \partial'' r_i(z) (\bar{w}'', w''), \quad \bar{\partial}'' \partial'' r_i(z) \ge 0$$

$$\forall z \in \hat{M}_i \cap U \, \forall i, \, \forall w = (w', w'') \in \mathbb{C}^N, |w'| = 1, |w''| = 1.$$

Remark that (1.1) and (1.2) do not depend on the choice of the equations $r_i = 0$ for the M_i 's.

Example: Let ∂W be C^4 . Then the space spanned by the q eigenvectors corresponding to $\mu^1(z) \leq \cdots \leq \mu^q(z)$ depends C^2 on z both for $q = N - 1 - s_{\partial W}^+(z_o)$ and $q = s_{\partial W}^-(z_o)$ (because in both cases $\mu^q(z) < \mu^{q+1}(z)$). As for the second condition $\mu^{q+1}(z) \geq 0$, this holds (even with strict inequality) for $q = N - 1 - s_{\partial W}^+(z_o)$ but not for $q = s_{\partial W}^-(z_o)$. However, it holds in this second case if we make the additional assumption $s_{\partial W}^-(z) \equiv \text{const}(=q)$. This is the situation treated by Michel in [8].

Let us represent, in complex coordinates $z=x+\sqrt{-1}y\in\mathbb{C}^N$, the boundary ∂W as a graph $x_1=h$ $(h=h(y_1,z_2,\bar{z}_2,\dots))$ and the domain W as $x_1>h$ with x_1-h inducing the parametric representation $x_1=h_i$ on each \hat{M}_i . We put $r:=-x_1+h$, $\delta:=-r$, $\phi:=-\log\delta+\lambda|z|^2$. Let $S:=\{z\colon h_i=h_j \text{ for } i\neq j\}$; clearly $S=R+\mathbb{R}^+_{x_1}$ and $\delta\in C^2(W\smallsetminus S)$. S is a manifold (because the M_i 's intersect transversally), and at each regular point of S (where $h_i=h_j$ but $h_i\neq h_k \ \forall k\neq j$) we consider the conormal

$$n_S = \frac{\partial (h_i - h_j)}{|\partial (h_i - h_j)|}.$$

Denote by $J(\cdot)$ the jump between the i's and the j's side of S. We have

(1.3)
$$n_S = \frac{J(\partial r)}{|J(\partial r)|} = \frac{J(\partial \phi)}{|J(\partial \phi)|}.$$

It is also clear that $\partial_{\omega'}|_{\hat{M}_i\cap\hat{M}_j}\subset T^{(1,0)}(M_i\cap M_j)$. Thus if we define $\omega'(z)$ on \bar{W} by $\omega'(z)=\omega'(z^*)$ (where $z\mapsto z^*$ is the projection on ∂W along the x_1 -axis), then we have

$$(1.4) \partial_{\omega'}|_S \subset T^{(1,0)}S.$$

We denote by $\omega''(z)$ an orthonormal completion of $\omega'(z)$ by (1,0)-forms. For ordered indices $J = (j_1 < \cdots < j_k)$ of length |J| = k, we consider vectors $w = (w_J)$ and, for a permutation σ , we put $w_{\sigma(J)} = \operatorname{segn} \sigma w_J$.

THEOREM 1.1: Let (1.1) be fulfilled for $\{\omega'\}$ of rank q. Let $\phi = -\log \delta + \lambda |z|^2$ be defined as above, and let (ϕ_{ji}) be the matrix of $\bar{\partial}\partial\phi$ in the basis $\omega = (\omega', \omega'')$. Then for a suitable λ , for a suitable neighborhood U of z_o , and for any $k \geq q+1$:

(1.5)
$$\sum_{|K|=k-1}' \sum_{ij=1,\dots,N} \phi_{ji} w_{iK} \bar{w}_{jK} - \sum_{|J|=k}' \sum_{j\leq q} \phi_{jj} |w_J|^2 \ge \lambda |w|^2$$
$$\forall z \in W \cap (U \setminus S) \forall w.$$

Proof: (Cf. also [12] for a similar argument.) We first observe that we have

(1.6)
$$\bar{\partial}\partial r(z) = \bar{\partial}\partial r(z^*), \quad \partial r^{\perp}(z) = \partial r^{\perp}(z^*) \quad \forall z \in W.$$

Hence (1.6) permits to propagate (1.1) from $\partial W \setminus R$ to $W \setminus S$. We remark that

(1.7)
$$\bar{\partial}\partial\phi(z) = \delta^{-1}\bar{\partial}\partial r + \delta^{-2}\bar{\partial}r \wedge \partial r + \lambda d\bar{z} \wedge dz.$$

Let $\lambda_1(z) \leq \lambda_2(z) \leq \cdots$ and $\mu_1(z) \leq \mu_2(z) \leq \cdots$ be the eigenvalues of $\bar{\partial}\partial\phi(z)$ and $\bar{\partial}\partial r(z)|_{\partial r^{\perp}(z)}$ respectively. It is clear that $\delta^{-1}\mu_i + \lambda$ are the eigenvalues of $\bar{\partial}\partial\phi|_{\partial r^{\perp}}$. We have

(1.8)
$$\sum_{|K|=k-1}' \sum_{ij=1,\dots,N} \phi_{ji} \bar{w}_{jK} w_{iK} \ge \left(\sum_{j=1,\dots,k} \lambda_j\right) |w|^2.$$

Also (1.1) gives, with the aid of (1.7),

$$\sum_{|J|=k} \sum_{j\leq q} \phi_{jj} |w_J|^2 = \left(\delta^{-1} \sum_{j\leq q} \mu_j + q\lambda\right) |w|^2.$$

Let ∂^{τ} (resp. ∂^{ν}) be the (1,0) derivatives tangential (resp. normal) to $\partial r^{\perp}(z)$. It is clear from (1.7) that for suitable c

$$(1.9) \bar{\partial}\partial\phi \geq \delta^{-1}\bar{\partial}^{\tau}\partial^{\tau}r - c\mathrm{d}\bar{z}^{\tau}\wedge\mathrm{d}z^{\tau} + \lambda'\mathrm{d}\bar{z}\wedge\mathrm{d}z.$$

Let $\{N_k\}$ denote the k-dimensional planes of \mathbb{C}^N . We then have

(1.10)
$$\sum_{j=1,\dots k} \lambda_{j} = \inf_{N_{k}} \operatorname{trace} \left(\bar{\partial} \partial \phi |_{N_{k}} \right)$$

$$\geq \inf_{N_{k}} \operatorname{trace} \left(\delta^{-1} \bar{\partial}^{\tau} \partial^{\tau} r - c d\bar{z}^{\tau} \wedge dz^{\tau} + \lambda d\bar{z} \wedge dz \right)$$

$$\geq (k\lambda - kc) + \delta^{-1} \sum_{j=1,\dots,k} \mu_{j}.$$

Thus for the new λ' defined by $\lambda' = (k - q)\lambda - kc$, we have

(1.11)
$$\sum_{j=1,\dots,k} \lambda_j - \delta^{-1} \sum_{j=1,\dots,q} \mu_j - q\lambda \ge \lambda' + \delta^{-1} \sum_{j=q+1,\dots,k} \mu_j \ge \lambda',$$

where the last inequality follows from the second condition in (1.1).

Here is our main result:

Theorem 1.2: Let W be a wedge of \mathbb{C}^N defined by $r_j < 0$ $j = 1, \ldots, m$ in a neighborhood of a point $z_o \in \partial W$, and assume (1.1) be fulfilled for a convenient orthonormal system of (1,0)-forms $\{\omega_j\} = \{\omega_1, \ldots, \omega_q\}$ with $\partial_{\omega'}|_{\partial W \setminus R} \subset T^{(1,0)}(\partial W \setminus R)$ and whose coefficients belong to $C^0(\partial W) \cap C^2(\partial W \setminus R)$ and have bounded first and second derivatives. Then there exists a fundamental system of neighborhoods $\{U\}$ of z_o such that for any $\bar{\partial}$ -closed form f of degree $k \geq q+1$ with $C^\infty(\overline{W} \cap \overline{U})$ coefficients, there is a form u of degree k-1 with $C^\infty(\overline{W} \cap \overline{U})$ -coefficients, which solves the equation $\bar{\partial} u = f$.

2. L^2 estimates and proof of Theorem 1.2

For a real positive function ϕ , we define $L_{\phi}^2(W)$ to be the space of functions on W which are square integrable in the measure $e^{-\phi} dV$ (dV being the Euclidean element of volume). We denote by $||\cdot||_{\phi}$ the corresponding norm. We denote by $L_{\phi}^2(W)^k$ the space of (0,k)-forms with coefficients in $L_{\phi}^2(W)$. In a basis $\{\omega_j\}$ they are written as $f = \sum_{|J|=k}' f_J \bar{\omega}_J$ where \sum' denotes summation over ordered indices and where $\bar{\omega}_J = \bar{\omega}_{j_1} \wedge \cdots \wedge \bar{\omega}_{j_k}$. We denote by (ϕ_{ji}) the matrix of the Hermitian form $\bar{\partial} \partial \phi$. (We assume that the basis $\{\omega\}$ is chosen as a completion of the system $\{\omega'\}$ in which (1.1) and hence (1.5) hold.) We introduce also another function $\psi \geq 0$, and consider the complex of closed densely defined operators

$$(2.1) L^2_{\phi-2\psi}(W)^{k-1} \stackrel{\bar{\partial}}{\to} L^2_{\phi-\psi}(W)^k \stackrel{\bar{\partial}}{\to} L^2_{\phi}(W)^{k+1}.$$

We denote by $\bar{\partial}^*$ the adjoint of $\bar{\partial}$ and define the operator $\delta_{\omega_j}(\cdot) = e^{\phi} \partial_{\omega_j}(e^{-\phi} \cdot)$. We have, for $f \in C_c^{\infty}(W)^k$,

(2.2)
$$\bar{\partial}^* f = -\sum_{|K|=k-1}' \sum_{j=1,\dots,N} e^{-\psi} \delta_{\omega_j}(f_{jK}) \bar{\omega}_K$$
$$-\sum_{|K|=k-1}' \sum_{j=1,\dots,N} e^{-\psi} f_{jK} \partial_{\omega_j} \psi \bar{\omega}_K + e^{-\psi} R_f,$$
$$\bar{\partial} f = \sum_{|I|=k}' \sum_{j=1,\dots,N} \bar{\partial}_{\omega_j}(f_J) \bar{\omega}_j \wedge \bar{\omega}_J + R_f,$$

where R_f are errors which involve products of the f_J 's by derivatives of coefficients of the ω_j 's. On the other hand we have

$$(2.3) \qquad ||\sum_{|K|=k-1}^{\prime} \sum_{j=1,\dots,N} \delta_{\omega_{j}}(f_{jK}) \bar{\omega}_{K}||_{\phi}^{2} = \sum_{|K|=k-1}^{\prime} \sum_{ij=1,\dots,N} \int_{W} e^{-\phi} \delta_{\omega_{i}}(f_{iK}) \overline{\delta_{\omega_{j}}(f_{jK})} dV,$$

$$||\sum_{|J|=k}^{\prime} \sum_{j=1,\dots,N} \bar{\delta}_{\omega_{j}}(f_{J}) \bar{\omega}_{j} \wedge \bar{\omega}_{J}||_{\phi}^{2} = \sum_{|K|=k-1}^{\prime} \sum_{ij=1,\dots,N} \int_{W} e^{-\phi} \bar{\delta}_{\omega_{j}}(f_{iK}) \overline{\tilde{\delta}_{\omega_{i}}(f_{jK})} dV + \sum_{|J|=k}^{\prime} \sum_{ij=1,\dots,N} \int_{W} e^{-\phi} |\bar{\delta}_{\omega_{j}}(f_{J})|^{2} dV.$$

It follows that

$$\sum_{|K|=k-1}' \sum_{ij=1,...,N} \int_{W} e^{-\phi} (\delta_{\omega_{i}}(f_{iK}) \overline{\delta_{\omega_{j}}(f_{jK})} - \bar{\partial}_{\omega_{j}}(f_{iK}) \overline{\bar{\partial}_{\omega_{i}}(f_{jK})}) \, dV$$

$$(2.4) + \sum_{|J|=kj=1,...,N}' \sum_{W} e^{-\phi} |\bar{\partial}_{\omega_{j}}(f_{J})|^{2} dV$$

$$\leq 3||\bar{\partial}^{*}f||_{\dot{\theta}-2\dot{\theta}}^{2} + 2||\bar{\partial}f||_{\dot{\theta}}^{2} + \sigma_{1}^{2}||f||_{\dot{\theta}}^{2} + 3|||\partial\psi|f||_{\dot{\theta}}^{2} \quad \forall f \in C_{c}^{\infty}(W)^{k},$$

where σ_1 can be estimated by the sup-norm of the derivatives of the coefficients of the ω_j 's over the support of f. (We shall also use the notation σ_2 as for the second derivatives.) We have the commutation relations

(2.5)
$$[\delta_{\omega_{i}}, \bar{\partial}_{\omega_{j}}] = \partial_{\bar{\omega}_{j}} \partial_{\omega_{i}} \phi + \sum_{h} c_{ji}^{h} \partial_{\omega_{h}} - \sum_{h} \bar{c}_{ij}^{h} \partial_{\bar{\omega}_{h}}$$

$$= \phi_{ji} + \sum_{h} c_{ji}^{h} \delta_{\omega_{h}} - \sum_{h} \bar{c}_{ij}^{h} \partial_{\bar{\omega}_{h}},$$

where the c_{ji}^h 's involve the antiholomorphic derivatives of the coefficients of the ω_i 's. We apply (2.5) to the whole of the terms in the first sum on the left of (2.4) and to the terms with $j \leq q$ in the second. We obtain

$$(2.6) \sum_{|K|=k-1}' \sum_{ij=1,\dots,N} \cdot + \sum_{|J|=kj=1,\dots,N}' \sum_{ij=k,j\leq q} \cdot \\ = \left(\sum_{|K|=k-1}' \sum_{ij=1,\dots,N} \int_{\Omega} e^{-\phi} \phi_{ji} f_{iK} \bar{f}_{jK} dV - \sum_{|J|=kj\leq q}' \sum_{j\leq q} \int_{\Omega} e^{-\phi} \phi_{jj} |f_{J}|^{2} dV \right) \\ + \left(\sum_{|J|=kj\leq q}' \sum_{j\leq q} ||\delta_{\omega_{j}} f_{J}||_{\phi}^{2} + \sum_{|J|=kj\geq q+1}' \sum_{j\leq q+1} ||\partial_{\bar{\omega}_{j}} f_{J}||_{\phi}^{2} \right) \\ + \left(\sum_{|K|=k-1}' \sum_{ij=1,\dots,N} \int_{S} e^{-\phi} J(\partial_{\omega_{i}} \phi) \bar{n}_{j} f_{iK} \bar{f}_{jK} dS \right) \\ - \sum_{|J|=kj\leq q}' \int_{S} e^{-\phi} J(\partial_{\omega_{j}} \phi) \bar{n}_{j} |f_{J}|^{2} dS + \text{Error},$$

where the error term has the estimate

$$(2.7) \quad |\text{Error}| \le \left(\sum_{|J|=k} \sum_{j \le q} ||\delta_{\omega_j} f_J||_{\phi}^2 + \sum_{|J|=k} \sum_{j \ge q+1} ||\bar{\partial}_{\omega_j} f_J||_{\phi}^2 \right) + (\sigma_1^2 + \sigma_2) ||f||_{\phi}^2.$$

Note that n'=0 whence $\sum_{|J|=k} \int_{S} \int_{S} dS = 0$. Moreover, since $n=\frac{J(\partial \phi)}{|J(\partial \phi)|}$, then

$$(2.8) \sum_{|K|=k-1}' \sum_{ij=1,\dots,N} \int_{S} \cdot dS = \sum_{|K|=k-1}' \sum_{ij=1,\dots,N} \int_{S} e^{-\phi} n_{i} \bar{n}_{j} |J(\bar{\partial}\phi)| \bar{f}_{jK} f_{iK} dS$$
$$= \sum_{|K|=k-1}' \int_{S} e^{-\phi} |\sum_{i=1,\dots,N} n_{i} f_{iK}|^{2} |J(\bar{\partial}\phi)| dS \ge 0.$$

We did not use any property of ϕ so far. For the sequel, however, we need our main hypothesis. We assume that (1.5) is fulfilled for any $z \in W \setminus S$, apply for $w = (f_J)_J$, and get

$$\sum_{|K|=k-1}' \sum_{ij=1,\dots,N} \int_{W} e^{-\phi} \phi_{ji} f_{iK} \bar{f}_{jK} dV - \sum_{|J|=k}' \sum_{j\leq q} \int_{W} e^{-\phi} \phi_{jj} |f_{J}|^{2} dV \ge \lambda ||f||_{\phi}^{2}.$$

By combining (2.7), (2.8), (2.9), we obtain the following estimation for the first line of (2.6):

(2.10)
$$\sum_{|K|=k-1}' \sum_{ij=1,\dots,N} \cdot + \sum_{|J|=k}' \sum_{j=1,\dots,N} \cdot \geq \lambda ||f||_{\phi}^2 - (\sigma_1^2 + \sigma_2)||f||_{\phi}^2.$$

By plugging together (2.4) and (2.10) we get (2.11)

$$\lambda ||f||_{\phi}^{2} \leq 3||\bar{\partial}^{*}f||_{\phi-2\psi}^{2} + 2||\bar{\partial}f||_{\phi}^{2} + (\sigma_{1}^{2} + \sigma_{2})||f||_{\phi}^{2} + 3|||\partial\psi|f||_{\phi}^{2} \quad \forall f \in C_{c}^{\infty}(W)^{k}.$$

We fix now a compact subset $K \subset\subset W$ that we may assume in the form $K = \{\phi \leq n\}$ for some n, and choose ψ according to [6, Lemma 4.1.3] (in particular we can choose $\psi|_K \equiv 0$). This ensures density of C_c^{∞} into L^2 -forms. Thus now (2.11) holds for L^2 instead of C_c^{∞} forms. We replace the above ϕ by

$$\chi(\phi) + (3 + \sigma_1^2 + \sigma_2)|z|^2$$

where χ is a positive convex function of a real argument t which satisfies:

(2.12)
$$\begin{cases} \chi(t) \equiv 0, & \text{for } t \leq n, \\ \dot{\chi}(t) \geq \sup_{\{z: \phi(z) \leq t\}} \frac{3(|\partial \psi|^2 + e^{\psi} - 1)}{\lambda}, & \text{for } t \geq n. \end{cases}$$

Under this choice of ϕ and ψ we conclude, for $k \geq q + 1$,

$$(2.13) ||f||_{\phi-\psi}^2 \le ||\bar{\partial}^* f||_{\phi-2\psi}^2 + ||\bar{\partial} f||_{\phi}^2 \forall f \in D_{\bar{\partial}}^k \cap D_{\bar{\partial}^*}^k,$$

where $D_{\bar{\partial}}^k$ and $D_{\bar{\partial}^*}^k$ are the domains in $L_{\phi}^2(W)^k$ of $\bar{\partial}$ and $\bar{\partial}^*$, respectively. Moreover, for any compact subset $K \subset\subset \Omega$, we may choose $\psi|_K \equiv 0$ and $\phi|_K \equiv (3 + \sigma_1^2 + \sigma_2)|z|^2$. To conclude the proof of Theorem 1.2, we need some further preparation which consists in a rearrangement of (2.13).

PROPOSITION 2.1: Let W be bounded and endowed with an exhaustion function satisfying (1.5) for any $z \in W \setminus S$. Then for $k \geq q+1$, for a suitable constant c, and for any form $f \in L^2_{c|z|^2}(W)^k$ with $\bar{\partial} f = 0$, there exists $u \in L^2_{c|z|^2}(W)^{k-1}$ such that

(2.14)
$$(\bar{\partial}u = f, \, \bar{\partial}^* u = 0) \quad ||u||_{c|z|^2}^2 \le ||f||_{c|z|^2}^2.$$

Cf. Appendix for the Proof.

Let $||\cdot||_{(s)}$ denote the norm in the Sobolev space $H^s(W)$. Let $W^{\epsilon}:=\{z\in W: \mathrm{dist}(z,\partial W)>\epsilon\}.$

PROPOSITION 2.2: Let W be bounded and endowed with an exhaustion function satisfying (1.5). Then for $k \geq q+1$ and for any $f \in C^{\infty}(W)^k$ with $\bar{\partial} f = 0$, there is $u \in C^{\infty}(W^{\epsilon})^{k-1}$ such that for any s and for suitable M_s we have

(2.15)
$$(\bar{\partial}u = f, \, \bar{\partial}^*u = 0), \quad ||u||_{(s+1)} \le \frac{M_s}{\epsilon^{s+1}} ||f||_{(s)}$$

(the norms of u and f being evaluated over W^{ϵ} and W respectively).

Cf. Appendix for the Proof.

End of Proof of Theorem 1.2: We suppose that W is locally defined at $z_0 = 0$ by $-x_1 + h < 0$ and then define W_{ν} by $-x_1 + h < \eta^{2^{\nu}}/2$ for $0 < \eta < \frac{1}{2}$. Clearly we have on a neighborhood of z_0

$$(2.16) \quad \{z \in \mathbb{C}^N : \operatorname{dist}(z, W) < \eta^{2^{\nu+1}}\} \subset W_{\nu} \subset \{z \in \mathbb{C}^N : \operatorname{dist}(z, W) < \eta^{2^{\nu}}/2\}.$$

We consider the sequence of domains $W_{\nu} \cap U_{\nu} \supset W_{\nu+1} \cap U_{\nu+1} \supset \cdots \supset W \cap U$ where U_{ν} (resp. U) is the sphere with center z_o and radius $\rho + \eta^{2^{\nu}}/2$ (resp. ρ) for small ρ . We note that (1.5) is fulfilled by the exhaustion function $\phi := -\log(\delta + \eta^{2^{\nu}}/2) + \lambda |z|^2 + \log(-|z - z_o|^2 + (\rho + \eta^{2^{\nu}}/2)^2)$. Thus we can apply (2.15) with the pair W, W^{ϵ} replaced by $W_{\nu} \cap U_{\nu}$, $W_{\nu+1} \cap U_{\nu+1}$. It is then easy (cf. Appendix) to find a sequence of approximate solutions on the $W_{\nu} \cap U_{\nu}$ which converge in $\overline{W} \cap \overline{U}$ to a true solution of $\bar{\partial}u = f$.

3. Appendix

For the convenience of the reader we collect here the proofs of Proposition 2.1 ([6, Prop. 4.4.1], Prop. 2.2 ([6, Prop. 4.2.4]) and the argument of Dufresnoy [3].

Proof of Proposition 2.1: Let ϕ be an exhaustion function which satisfies (1.5) on the whole W and set $K_n:=\{\phi\leq n\}$ for n large. Take $\psi=\psi_n$ with $\psi|_{K_n}\equiv 0$ and $\chi=\chi_n$ convex with $\chi(t)\geq 0$ $\forall t\in\mathbb{R},\ \chi(t)\equiv 0\ \forall t\leq n$ and which verifies (2.12). We also suppose $\chi(\phi)-2\psi\geq 0$ and consider $\chi(\phi)+c|z|^2$ where c is an uniform upper bound for $2+\sigma_1^2+\sigma_2$ on the whole \bar{W} . Note that $\chi(\phi)+c|z|^2\equiv c|z|^2$ over K_n .

Let $\int_W e^{-c|z|^2} |f|^2 dV \leq 1$ (hence $f \in L^2_{\chi(\phi)+c|z|^2-\psi}(W)^k$). For any $g \in L^2_{\chi(\phi)+c|z|^2-\psi}(W)^k$ we have

$$(3.1) |(f,g)_{\chi(\phi)+c|z|^2-\psi}|^2 \le \int_W e^{-2\chi(\phi)-c|z|^2+2\psi}|g|^2 dV$$

$$\le \int_W e^{-\chi(\phi)-c|z|^2}|g|^2 dV$$

$$\le ||\bar{\partial}^*g||_{\chi(\phi)+c|z|^2-2\psi}^2 + ||\bar{\partial}g||_{\chi(\phi)+c|z|^2}^2,$$

where the last inequality follows from (2.13). It is immediate to see, because of $\bar{\partial} f = 0$, that in fact

$$(f,g)_{\chi(\phi)+c|z|^2-\psi} \le ||\bar{\partial}^*g||_{\chi(\phi)+c|z|^2-2\psi}.$$

It follows that the mapping $\bar{\partial}^*g \mapsto (f,g)_{\chi(\phi)+c|z|^2-\psi}$ is represented by $\bar{\partial}^*g \mapsto (u,\bar{\partial}^*g)_{\chi(\phi)+c|z|^2-2\psi}$, for a convenient u which can be chosen in the image of $\bar{\partial}^*$ thus verifying $\bar{\partial}^*u = 0$ and with $||u||_{\chi(\phi)+c|z|^2-2\psi} \leq 1$. By approximating W by the sequence K_n , taking a sequence of solutions $u = u_n$, and remarking that $\chi_n(\phi) \equiv 0$ and $\psi_n \equiv 0$ on K_n , we can find a subsequence u_{n_j} which converges to a form u which fulfills all requirements in the statement.

Proof of Proposition 2.2 (Dufresnoy [3]): Let $\chi^{\epsilon} \equiv 1$ on \bar{W}^{ϵ} , supp $\chi_{\epsilon} \subset W^{\epsilon/2}$. It is easy to find such a smooth χ^{ϵ} with the property

(3.2)
$$|\bar{\partial}^{\alpha} \chi^{\epsilon}| \leq \frac{M_{\alpha}}{\epsilon^{|\alpha|}} \quad \forall \alpha \in \mathbb{N}^{N}.$$

Here we have used the notation $\bar{\partial}^{\alpha} = \bar{\partial}^{\alpha_1}_{\omega_1} \cdot \ldots \cdot \bar{\partial}^{\alpha_N}_{\omega_N}$. If we apply (2.4) to the (compactly supported) form $\bar{\partial}^{\alpha}(\chi^{\epsilon}u)$ and with $\phi = 0$, $\psi = 0$, we get

$$(3.3) \qquad ||\bar{\partial}^{\alpha}(\chi^{\epsilon}u)||_{(1)}^{2} \leq c(||\bar{\partial}^{\alpha}(\chi^{\epsilon}u)||_{(0)}^{2} + ||\bar{\partial}(\bar{\partial}^{\alpha}\chi^{\epsilon}u)||_{(0)}^{2} + ||\bar{\partial}^{\star}(\bar{\partial}^{\alpha}\chi^{\epsilon}u)||_{(0)}^{2})$$

(where $||\cdot||_{(0)}$ denotes the norm in $H^0=L^2$ and $\bar{\partial}^\kappa\colon (L^2)^\kappa\to (L^2)^{\kappa-1}$). In particular, suppose that u is a solution of $(\bar{\partial}u=f,\bar{\partial}^*u=0)$ satisfying $||u||_{c|z|^2}\leq ||f||_{c|z|^2}$ according to Proposition 2.1. (Here $\bar{\partial}^\kappa\colon L^2_{c|z|^2}{}^\kappa\to L^2_{c|z|^2}{}^{\kappa-1}$.) By combining (3.2) with (3.3) for this particular choice of u, and observing that W being bounded, the $L^2_{c|z|^2}(W)$ and $L^2(W)$ -norms are equivalent, we get at once the conclusion.

Outline of the approximation argument in the end of the proof of Theorem 1.2: Let $W_{\nu} \supset \supset W_{\nu+1} \supset \supset \cdots \supset \supset W$ be a sequence of domains satisfying (2.16). Take a sequence of spheres $U_{\nu} \supset \supset U_{\nu+1} \supset \cdots$ with center z_0 and radius $\rho + \eta^{2^{\nu}}/2$ and write again W_{ν} instead of $W_{\nu} \cap U_{\nu}$. Let $f \in C^{\infty}(\bar{W})^k$ satisfy $\bar{\partial} f = 0$. Extend f to \tilde{f} such that

$$||\bar{\partial}\tilde{f}||_{(s)} \leq M_{rs}\eta^{r2^{\nu}}$$
 on W_{ν} for any r, s and for suitable M_{rs} .

This is clearly possible because $\bar{\partial} \tilde{f} \equiv 0$ on W and because

$$W_{\nu} \subset \{z: \operatorname{dist}(z, W) < \eta^{2^{\nu}}/2\}.$$

According to Proposition 2.2, there is a solution h_{ν} on $W_{\nu+1}$ of

$$\begin{cases} \ \bar{\partial} h_{\nu} = \bar{\partial} \tilde{f} \\ ||h_{\nu}||_{(s+1)} \le M_s (\eta^{2^{\nu+1}})^{-s-1} ||\bar{\partial} \tilde{f}||_{(s)} \end{cases}$$

(due to $W_{\nu+1} \subset \{z : \operatorname{dist}(z, \partial W_{\nu}) > \eta^{2^{\nu+1}}/2\}$). Solve on W_2 the equation $\bar{\partial} u_1 = \tilde{f} - h_1$, and, inductively on $W_{\nu+2}$,

$$\bar{\partial}u_{\nu+1} = h_{\nu} - h_{\nu+1},$$

with the estimates

$$\begin{aligned} ||u_{\nu+1}||_{(s+2)} &\leq M_{s+1}(\eta^{2^{\nu+2}})^{-(s+2)}||h_{\nu} - h_{\nu+1}||_{(s+1)} \\ &\leq M_s'(\eta^{2^{\nu+2}})^{-2s-3}M_{rs}\eta^{r2^{\nu}} \\ &\leq M_{rs}'\frac{1}{2^{\nu}} \quad (r, \nu \text{ large}). \end{aligned}$$

Therefore $\sum_{\nu=1}^{\infty} u_{\nu}$ converges in $C^{\infty}(\bar{W})$ and solves on \bar{W} :

$$ar{\partial}(\sum_{\nu=1}^{\infty}u_{
u})= ilde{f}-\mathrm{lim}_{
u}h_{
u}= ilde{f}.$$

References

- R. A. Airapetyan and G. M. Henkin, Integral representation of differential forms on Cauchy-Riemann manifolds and the theory of CR-functions, Uspekhi Matematicheskikh Nauk 39 (3) (1984), 39-106.
- [2] A. Andreotti and H. Grauert, Théorèmes de finitude pour la cohomologie des éspaces complexes, Bulletin de la Société Mathématique de France 90 (1962), 193-259.
- [3] A. Dufresnoy, Sur l'operateur θ et les fonctions différentiables au sens de Whitney, Annales de l'Institut Fourier 29 (1) (1979), 229–238.
- [4] G. M. Henkin, H. Lewy's equation and analysis on pseudoconvex manifolds (Russian), I, Uspehi Matematisheskikh Nauk 32 (3) (1977), 57-118.
- [5] L. Hörmander, L^2 estimates and existence theorems for the $\tilde{\partial}$ operator, Acta Mathematica 113 (1965), 89–152.
- [6] L. Hörmander, An Introduction to Complex Analysis in Several Complex Variables, Van Nostrand, Princeton, N.J., 1966.
- [7] J. J. Kohn, Regularity at the boundary of the Θ-Neumann problem, Proceedings of the National Academy of Sciences of the United States of America 49 (1963), 206-213.
- [8] V. Michel, Sur la regularité C^{∞} du $\bar{\partial}$ au bord d'un domaine de \mathbb{C}^n dont la forme de Levi a exactement s valeurs propres strictement negatives, Mathematische Annalen 195 (1993), 131–165.

- [9] A. Tumanov, Extending CR functions on a manifold of finite type over a wedge, Matematicheskii Sbornik 136 (1988), 129–140.
- [10] G. Zampieri, Simple sheaves along dihedral Lagrangians, Journal d'Analyse Mathématique 66 (1995), 331–344.
- [11] G. Zampieri, L^2 -estimates with Levi-singular weight, and existence for $\bar{\partial}$, Journal d'Analyse Mathématique **74** (1998), 99–112.
- [12] G. Zampieri, C^{∞} solvability of the $\bar{\partial}$ system on wedges of \mathbb{C}^N , preprint, 1998.