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ABSTRACT 
For a wedge W of C/v , we introduce an intrinsic condition of weak q- 

pseudoconvexity which can be expressed in terms of q-subharmonicity both 

of a defining function or an exhaustion function. Under this condition we 
prove solvability of the c~ system for forms with C ~176 (W)-coefficients of 
degree >__ q q- I. Our method relies on the L2-estimates by Hbrmander. For 

C ~ (W) solvability we refer to Hbrmander (if OWE C2), and to Zampieri 
(for general wedges W). For C~176 solvability and with aW E C 2, we 

refer to Dufresnoy (if q = 0), Michel (if the number of negative Levi- 

eigenvalues of aW is constant), and finally Zampieri (for more general 

q-pseudoconvexity). 

1. q-pseudoconvexi ty  of  wedges  

Let Ws, i = 1 , . . .  ,m, be C 2 half-spaces in a neighborhood of a point Zo and let 

W be the "wedge" defined by W -- ~s Ws. We denote by Ms the hypersurfaces 

Ms =OWi, by/V/s the "faces" /V/i = Ms rl OWi and also set 

R = { z e M i n M j f o r s o m e i C j }  and R=RfTOW. 

"~ M We suppose that  the Mi's intersect transversally and that ~i=1 i is "generic". 

We take equations ri = 0 for the Mi's (with the Ws's defined by rs < 0) and define 

the Levi form of the function r~ (resp. of the hypersurface Ms)by OOrs (resp. 

OOrslor~). Here " _l_" denotes the complex orthogonal. We now formulate our 

main assumption. For an orthonormal system of (1, 0)-forms {w'} = {wl , . . . ,  coq} 

on OW in a neighborhood U of zo, with Span{0~,}lt~ ~ C T(l'~ Vi, which is 

Received August 10, 1998 

321 



322 G. ZAMPIERI Isr. J. Math. 

C~ n C2(OW \ R) with bounded first and second derivatives, we have on 

OW: 

(1.1) Span{0~, } is a q-space of minimal trace 

for Ocgrilorr and OOril{~,,ard• >_ O. 

Let #1 _< #2 < . . .  be the eigenvalues of OOrilorb. Then (1.1) means that 

Span{0~,} is engendred by q eigenvectors with eigenvalues #1 , . . .  ,#q and that 

#q+l _> 0. Another condition equivalent to (1.1) is that for an orthonormal 

completion {0~,,} of {O~,} on each complex bundle T(1,~ we have in a 

neighborhood U of Zo: 

(1.2) 
$'O"ri(z)=O, < O"O"ri(z) >_ 0 

Vz �9 M nUVi, Vw = (w', d ' )  e CN, Iw'l = 1, Iw"l  = 1. 

Remark that  (1.1) and (1.2) do not depend on the choice of the equations ri = 0 

for the Mi's. 

Example: Let OW be C a. Then the space spanned by the q eigenvectors corre- 

sponding to # l (z)  < . . .  < ltq(z) depends C 2 on z both for q -- g - 1 - S+w(Zo) 

and q = Sow(Zo ) (because in both cases #q(z) < #q+l(z)). As for the second con- 

dition #q+l (z) > 0, this holds (even with strict inequality) for q = N - 1 - S + w  (zo) 
but not for q = Sow(Zo ). However, it holds in this second case if we make the 

additional assumption Sow(Z ) = const(= q). This is the situation treated by 

Michel in [8]. 

Let us represent, in complex coordinates z = x + x/%--[y C C N, the boundary 

OW as a graph Xl = h (h = h(y1,z2,22, . . . ) )  and the domain W as Xl > h with 

xl  - h inducing the parametric representation Xl = hi on each .ht/i. We put r := 

- x l  + h, 5 := - r ,  r := - l o g 5  + )qzl 2. Let S := {z: hi = hj for i ~ j}; clearly 

S = R + ~ 1  and 5 E C2(W \ S). S is a manifold (because the Mi's intersect 

transversally), and at each regular point of S (where hi = hj but hi r hk Vk r j) 
we consider the conormal 

O(hi - hi) 
ns  - ]O(hi - hj)l 

Denote by J(-) the jump between the i's and the j ' s  side of S. We have 

J(Or) J(0r  
(1.3) n s -  ij(Or) I - i j ( O r  I. 
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It is also clear that  O~,ly~ny4~ C TO'~ N Mj). Thus if we define w'(z) on 

l]d by w'(z) = w'(z*) (where z ~ z* is the projection on OW along the xl-axis), 

then we have 

(1.4) O~,[s C T(l'~ 

We denote by w"(z) an orthonormal completion of w'(z) by (1,0)-forms. For 

ordered indices J = (jl < "'" < jk) of length IJI = k, we consider vectors 

w = (wg) and, for a permutation a, we put w~(j) = segn a wj.  

THEOREM 1.1: Let (1.1) be fulfilled for {w'} of rank q. Let r = - log5  + Alzl 2 

be defined as above, and let (r be the matrix of 00r in the basis w = (w', w"). 
Then for a suitable A, for a suitable neighborhood U Of Zo, and for any k >_ q + 1: 

(1.5) ~ '  Z Cj iWiK~jK-  Z ' Z C j j l w J [  2> _ A[w[ 2 
I K [ = k - l i j = l  ..... N [J[=kj<q 

Vz ~ W n ( U  \ S ) V w .  

Proof." (Cf. also [12] for a similar argument.) We first observe that  we have 

(1.6) bar(z)  = bar(z*), a r l ( z )  = ar•  *) Vz e w.  

Hence (1.6) permits to propagate (1.1) from aW \ R to W \ S. We remark that  

(1.7) oar = 5-10Or -b 8-2br A Or + Ad2 A dz. 

Let Al(Z) _< A2(z) <_ . . .  and #x(Z) <_ #2(z) _< " "  be the eigenvalues of OOr 
and bar(z)]or• ) respectively. It is clear that  8-1/~i + A are the eigenvalues of 

hOe[or• We have 

(1.8) Z '  Z Cjiff~jKWiK >_ ( Z AJ) [w]2" 
[ K ] = k - l i j = l  ..... N \ j = l  ..... k 

Also (1.1) gives, with the aid of (1.7), 

[J]=kj<_q j<_q 

Let a ~ (resp. a ~) be the (1,0) derivatives tangential (resp. normal) to Or• 
It is clear from (1.7) that  for suitable c 

(1.9) 00r >_ 5-1b~O~r - cdZ ~ Adz ~ + A'd2 A dz. 
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Let {Ark} denote the k-dimensional planes of C N. We then have 

(1.10) E Aj = inf trace (Ch0r 
N~ 

j=l,...k 

> inf trace (5-10rOar - cd2 ~ Adz ~ + Ad2 A dz) 
Nk 

j=l,...,k 

Thus for the new A' defined by A' = (k - q)A - kc, we have 

(1.11) ~ A j - 5  -1 Z # J - q A  _> A' -t-6 -1 E 
j=l,...k j=l,...q j=q+l,...,k 

#j _> A', 

where the last inequality follows from the second condition in (1.1). 

Here is our main result: 

THEOREM 1.2: Let W be a wedge of C N defined by rj < 0 j = 1 , . . . , m  in 

a neighborhood of a point Zo C OW, and assume (1.1) be fulfilled for a conve- 

nient orthonormal system of (1, O)-forms {wj} = {0)1 , . . .  ,aJq} with O~,[ow.. n C 

T(I'~ \ R) and whose coefficients belong to C~ N C2(OW \ R) and 

have bounded first and second derivatives. Then there exists a fundamental sys- 

tem of neighborhoods {U} of zo such that for any O-closed form f of degree 

k >_ q + 1 with C ~~ (W N U) coefficients, there is a form u of degree k - 1 with 

C~176  N U)-coefficients, which solves the equation Ou = f . 

2.  L 2 e s t i m a t e s  a n d  p r o o f  o f  T h e o r e m  1 .2  

For a real positive function r we define L2c(W) to be the space of functions on 

W which are square integrable in the measure e-CdV (dV being the Euclidean 

element of volume). We denote by [1" [[r the corresponding norm. We denote 

by L~(W)  k the space of (0, k)-forms with coefficients in L2c(W). In a basis {wj} 

they are written as f = ~iJ{=k fjCdj where ~-~.' denotes summation over ordered 
indices and where ~ j  -- &jl A ... A o3jk. We denote by (r the matrix of the 

Hermitian form cq0r (We assume that the basis {w} is chosen as a completion of 

the system {w'} in which (1.1) and hence (1.5) hold.) We introduce also another 

function r > 0, and consider the complex of closed densely defined operators 

(2.1) L~_2c(W) k-1 ~ L~_r k ~ L2c(W) k+l. 
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We denote by c5" the adjoint of 0 and define the operator 5~r (.) = er (e-r 

We have, for f E C~(W) k, 
(2.2) ~*s=- Z' ~ e - ~ ( S ~ ) ~  

Igl=k-l j=l  ..... N 

- Z'  ~ e-%~0~r + e-end, 
I g l = k - l j = l  ..... N 

Of = E' E O,z, (fd)ff~j A COd + Rf, 
IJl=k j=~ ..... N 

where RI are errors which involve products of the f j ' s  by derivatives of 

coefficients of the wj's. On the other hand we have 

(2.3) 

II X~' ~ ~,(fJ~)~gll$ = 
I K l = k - l j = l  ..... N 

~-~' ~ fw e-r 
IKl=k-lij=l ..... N 

l iE' ~ ,~(.fA~A~JII~,= 
i g l = k j = ~  ..... .,v 

IKl=k-l~j--i ..... N 

li[=~j=l ..... n 

It follows that 

F_,' ~ fw:%~,(I'K)'~J(I~K) --O~,(Y'~)O~,(SJK)) dy 
I g l = k - l i j = l  ..... N 

(2.4) + E '  E /we-~lO~(fJ)l ~dV 
I J I = k j = I , . . . , N  

3 5 *  2 <- II f11,-2r + 2110fll~ + o1211f11~ + 31110r v f  e c ~ ( w )  k, 

where al  can be estimated by the sup-norm of the derivatives of the coefficients 

of the wi's over the support of f .  (We shall also use the notation a2 as for the 

second derivatives.) We have the commutation relations 

h 

h h 

h -h  

h h 
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where the c~.~'s involve the antiholomorphic derivatives of the coefficients of the 
w~'s. We apply (2.5) to the whole of the terms in the first sum on the left of (2.4) 
and to the terms with j < q in the second. We obtain 

(26) E' E + E ' E  
I g l = k - l i j = l  ..... g I g l = k j = l  ..... N 

---- (lK~=k i lij_~l....,N ~ e-r r ~KdV -- [j~=:j~<_q L e-r r ]f J ]2 dV) 

]Jl=kj~_q [J l=k j>q+l  

- ig~l=:j~<q~se-r162 ) +Error, 

where the error term has the estimate 

(2.7) IError] < ( E ' E ] ] 6 ~ , f j [ [  ~ + E '  E ]]c~,fJ]l~) +:a12 +a2)][fl]~" 
]J]=kj<q ]d]=kj>q+l 

Note that n' = 0 whence ~-~/ ~ fs .dS = O. Moreover, since n = g(or then IJ(Or 
]J[=kj<_q 

ilq=k-lij=1,...,N IKl=k--1 ij= ,...,N 
= E '  ~ e-el E n'Agl21J(Or >- O. 

IKl=k-1  ,;=1 ..... g 

We did not use any property of r so far. For the sequel, however, we need our 

main hypothesis. We assume that (1.5) is fulfilled for any z E W \ S, apply for 

W = ( f j ) j ,  and get 
(2.9) 

I K l = k - l i j = l  ..... N IJl=kj<_q 

By combining (2.7), (2.8), (2.9), we obtain the following estimation for the first 

line of (2.6): 

(2.~o) E' E -+Z' E --> ~II:I I~- (~; + ~)II:I I:.  
[ K l = k - l i j = l  ..... N IJ [=k j=l  ..... N 
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By plugging together (2.4) and (2.10) we get 

(2.11) 

,~llf[l~ -< 311,9"f11,~_2r + 2l[0fll~ + (cr~ + a2)llfll,~ + 31110r v / � 9  c T ( w )  ~ 

We fix now a compact subset K CC W that we may assume in the form K = 

{r < n} for some n, and choose r according to [6, Lemma 4.1.3] (in particular 

we can choose e l k  - 0). This ensures density of C~  into L2-forms. Thus now 

(2.11) holds for L 2 instead of C~  forms. We replace the above r by 

X(r + (3 + a 2 + ~2)lzl 2, 

where X is a positive convex function of a real argument t which satisfies: 

x(t)  -- 0, for t < n, 

(2.12) )~(t) > sup 3([~ for t > n. 
- {z:r )~ ' - 

Under this choice of r and r we conclude, for k _> q + 1, 

~* 2 (2.13) [If[l~-r < [I f11r + II0fll~ Vf �9 D k- fq D k- - -  0 0 "  

where D~ and D~-. are the domains in L2c(W) k of 0 and c5", respectively. More- 

over, for any compact subset K CC ~, we may choose e l k  - 0 and elK -- 

(3 + ~ + o2)lzl ~. T o  conclude the proof of Theorem 1.2, we need some further 

preparation which consists in a rearrangement of (2.13). 

PROPOSITION 2.1: Let W be bounded and endowed with an exhaustion function 

satisfying (1.5) for any z �9 W \ S. Then for k _> q + 1, for a suitable constant 

c, and for any form f �9 L2clzl 2 (W)  k with Of  : O, there exists u �9 L~lzl2 (W) k-1 

such that 

(2.14) (cgu f 0*u 0) 2 2 = , = Ilullclzp ~ Ilfllclzl~. 

Cf. Appendix for the Proof. 

Let [1" [1(8) denote the norm in the Sobolev space H s ( W ) .  Let W r := 

{z E W :  d is t (z ,0W) > e}. 

PROPOSITION 2.2': Let W be bounded and endowed with an exhaustion function 

satisfying (1.5). Then for k >__ q +  1 and for any f E C ~ ( W )  k with Of = O, there 

is u E C ~ ( W ~ )  k-1 such that for any s a n d  for suitaNe M8 we have 

Ms 
(2.15) (0u = f ,  c~*u = 0), Ilul[(~+l) <_ e-2gg[lfl[0) 
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(the norms of u and f being evaluated over W ~ and W respectively). 

Cf. Appendix for the Proof. 

End of Proof of Theorem 1.2: We suppose that W is locally defined at z0 -- 0 

by -Xl  + h < 0 and then define W~ by - x l  + h < ~2~/2 for 0 < T/< �89 Clearly 

we have on a neighborhood of Zo 

(2.16) {z C c N :  dist(z,W) < r/2~*'} C Wv C {z E cN:  dist(z,W) < r/~'~/2}. 

We consider the sequence of domains Wv M Uv DD W~+I M U.+] DD -..  DD 

W M U where U~ (resp. U) is the sphere with center Zo and radius p + 7/2~/2 

(resp. p) for small p. We note that (1.5) is fulfilled by the exhaustion function 

r := - log(5 + r]2"/2) + A[z[ 2 + log(-Iz  - Zo] 2 + (p+ r/2~/2)2). Thus we can apply 

(2.15) with the pair W, W ~ replaced by Wu M U~, Wv+l M U~+l. It is then easy 

(cf. Appendix) to find a sequence of approximate solutions on the W~ M U~ which 

converge in W M U to a true solution of vbu = f .  | 

3. A p p e n d i x  

For the convenience of the reader we collect here the proofs of Proposition 2.1 

([6, Prop. 4.4.1], Prop. 2.2 ([6, Prop. 4.2.4]) and the argument of Dufresnoy [3]. 

Proof of Proposition 2.1: Let r be an exhaustion function which satisfies (1.5) on 

the whole W and set Kn := {r < n} for n large. Take r = r with r -- 0 and 

X = X,~ convex with x(t) >_ 0 Vt E R, x(t) -- 0Vt < n and which verifies (2.12). 

We also suppose X(r - 2r  > 0 and consider X(r + cizi 2 where c is an uniform 

upper bound for 2 + a~ + a2 on the whole I~r -. Note that X(r  clz] 2 - clz] 2 over 

gn. 
L 2 (W ~k~ For any g E Let fwe-Clzl21fl2dV ~ 1 (hence f E x(r162 j j. 

2 k Lx(r162 ) we have 

(3.1) I(f'g)x(r162 <-/w e-2X(r162 

<-/w e-X(r 

< II + II gllx( )+cl=p, 

where the last inequality follows from (2.13). It is immediate to see, because of 

0 f  = 0, that  in fact 

( f  , g)x(4))+clzl2-r <_ -* Ila 
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It follows that  the mapping O*g ~ (f,g)x(r162 is represented by c~*g 

(u, ~*g)x(r162 , for a convenient u which can be chosen in the image of 0" 

thus verifying 0*u = 0 and with IlU]lx(r162 <_ 1. By approximating W 

by the sequence K~, taking a sequence of solutions u = u~, and remarking that  

X~(r - 0 and r -- 0 on K~, we can find a subsequence u, b which converges to 

a form u which fulfills all requirements in the statement. | 

Proof of Proposition 2.2 (Dufresnoy [3]): Let X ~ _= 1 on ITd ~, suppx~ C W ~/2. It 

is easy to find such a smooth X ~ with the property 

M~ NN" 

Here we have used the notation 0~ = 0 ~  . . . .  �9 0~.-~ If we apply (2.4) to the 

(compactly supported) form O~(X~u) and with r = 0, r = 0, we get 

-*  a e 2 (3.3) _< c(llo ':'(x u)ll o) + IIO(O~ + IiO (0 x 

(where I1" I1(0) denotes the norm in H ~ = L 2 and c5": (L2) ~ -+ (L2)~-1). 

In particular, suppose that  u is a solution of (cSu = f,O*u = 0) satisfying 

[]u[Iclzp _< Ilfllclzl2 according to Proposition 2.1. (Here c%: L 2clzl 2a ~ L 2c[~12tr 

By combining (3.2) with (3.3) for this particular choice of u, and observing that  

W being bounded, the L21~I2(W ) and L2(W)-norms are equivalent, we get at 

once the conclusion. | 

Outline of the approximation argument in the end of the proof of Theorem 1.2: 
Let W~ DD W~+I ~ . . .  DD W be a sequence of domains satisfying (2.16). Take 

a sequence of spheres U. DD Uv+l DD -.. with center z0 and radius p + ~/2v/2 

and write again Wv instead of Wv•Uv. Let f E C~176 k satisfy cSf = 0. Extend 

f to ] such that  

IIO]11( ) -< Mr u on W~ for any r, s and for suitable Mrs. 

This is clearly possible because Of =- 0 on W and because 

W~ C {z: dist(z,W) < ~2"/2}. 

According to Proposition 2.2, there is a solution hv on W,+I of 

<_ M~(y2"+l)-~-llJ8/II(~) 
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(due to W~+I C {z : dist(z,0W~) > ~ 2v+'/2}). 

chul -- ] -  hi, and, inductively on W~+2, 

0u~+l = h/2 - hv+l, 

with the estimates 

Ilu/2+l[l(s+2) _< Ms+l(~12'~+2)-(s+2)[Ih/2 - h/2+lII(s+l) 

< Mt(~2"+'~)-28-3Mrs~ r2" 

< M '  1 (r, vlarge). 
- -  r s  2 / 2  

Therefore ~/2~--1 u/2 converges in C~ and solves on l~: 

c o  

0 ( E  u/2) = ] - l im/2h~  -- ].  

Isr. J. Math. 

Solve on W2 the equation 
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