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ABSTRACT

For a wedge W of CV, we introduce an intrinsic condition of weak g¢-
pseudoconvexity which can be expressed in terms of g-subharmonicity both
of a defining function or an exhaustion function. Under this condition we
prove solvability of the 8 system for forms with C% (W )-coefficients of
degree > g+ 1. Our method relies on the L2-estimates by Hormander. For
C> (W) solvability we refer to Hormander (if 0W € C?), and to Zampieri
(for general wedges W). For C®(W) solvability and with W € C?, we
refer to Dufresnoy (if ¢ = 0), Michel (if the number of negative Levi-
eigenvalues of OW is constant), and finally Zampieri (for more general
g-pseudoconvexity).

1. g-pseudoconvexity of wedges

Let W;, i = 1,...,m, be C? half-spaces in a neighborhood of a point z, and let
W be the “wedge” defined by W = [, W;. We denote by M; the hypersurfaces
M; = oW;, by Mi the “faces” M; = M, 1 8W; and also set

R={z€ M;NM; forsomei#j} and R=RNOW.

We suppose that the M;’s intersect transversally and that ;- ; M; is “generic”.
We take equations r; = 0 for the M;’s (with the W’s defined by r; < 0) and define
the Levi form of the function r; (resp. of the hypersurface M;) by 80r; (resp.
00r;|5,1). Here “ 1” denotes the complex orthogonal. We now formulate our
main as'sumption. For an orthonormal system of (1,0)-forms {w'} = {w,...,wq}
on OW in a neighborhood U of z,, with Span{0.-}|;;, C T M; Vi, which is
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C%(OW) N C?*(8W ~ R) with bounded first and second derivatives, we have on
oW

(1.1) Span{d,} is a g-space of minimal trace

for éama,% and 80r;| (s ari3+ 2 0.

Let p! < p? < --- be the eigenvalues of 581"1-[0#. Then (1.1) means that
Span{d,-} is engendred by g eigenvectors with eigenvalues 1, ... , g and that
Bg+1 > 0. Another condition equivalent to (1.1) is that for an orthonormal
completion {8~} of {B.:} on each complex bundle T(1) M| s1,» we have in a
neighborhood U of z,:

1.2) 8d'ri(2) =0, 8ri(2)(w,w') < 8'd'ri(2)(w",w"), 8'0"r:i(z) >0
' Vz € M;NUVs, Vw = (v',w") e CV,|[w'| = 1, |w"| = 1.
Remark that (1.1) and (1.2) do not depend on the choice of the equations r; = 0

for the M;’s.

Example: Let 8W be C*. Then the space spanned by the g eigenvectors corre-
sponding to p'(2) < -+ < pi(2) depends C? on z both for g = N — 1 — sk, (z,)
and ¢ = s5y,(2,) (because in both cases p9(z) < p91(2)). As for the second con-
dition pt1(z) > 0, this holds (even with strict inequality) for g = N —1—s7} (zo)
but not for ¢ = sy, (2,). However, it holds in this second case if we make the
additional assumption szy,(2) = const(= g). This is the situation treated by
Michel in [8].

Let us represent, in complex coordinates z = z + v/—1y € CV, the boundary
OW as a graph z; = h (h = h(y1, 22,22, ...)) and the domain W as z; > h with
z7 — h inducing the parametric representation £; = h; on each M;. We put r:=
~z1 +h, §:=—r, ¢ := —logd + Az|>. Let S :={2: h; = h; for i # j}; clearly
S =R+R} and § € C}(W~S). S is a manifold (because the M;’s intersect
transversally), and at each regular point of S (where h; = h; but h; # hi Vk # j)
we consider the conormal

ng = O(h; — hj)
|0(h; — hy)|”

Denote by J{-) the jump between the i’s and the j’s side of S. We have

_ @) _ 1(84)

(1.3) "= 1Ten] T 170
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It is also clear that 8|y, C TO(M; N M;). Thus if we define w'(2) on
W by w'(z) = w'(2*) (where z — 2* is the projection on W along the z;-axis),
then we have

(1.4) d|s c THO S,

We denote by w”(z) an orthonormal completion of w'(z) by (1,0)-forms. For
ordered indices J = (ji < --- < ji) of length |J| = k, we consider vectors
w = (wy) and, for a permutation o, we put w,(s) = segnow;.

THEOREM 1.1: Let (1.1) be fulfilled for {w'} of rank q. Let ¢ = —logé + A|z|?
be defined as above, and let (¢;;) be the matrix of 04 in the basis w = (w',w").
Then for a suitable A, for a suitable neighborhood U of z,, and for any k > q+1:

(1.5) ZI Z Pjiwik Wik — Z/ Z¢jj|w112 > Aw|?

|K|=k—-1ij=1,...,N |J|=ki<q
Vze WnN (U S)Vw.

Proof: (Cf. also [12] for a similar argument.) We first observe that we have
(1.6) B0r(z) = 00r(z*), Ort(z) =o0rt(z*) VzeW.
Hence (1.6) permits to propagate (1.1) from W \ R to W ~ S. We remark that

(1.7 0¢(2) = 67100r + 6720r AOr + AdzZ A dz.

Let A\1(2) < Xg(2) < -+ and py(2) < pa(2) < --- be the eigenvalues of 80¢(z)
and 56r(z)|3r¢(z) respectively. It is clear that 6~ 1/1,1 + A are the eigenvalues of
99¢|5,.. We have

(1'8) Z Z ¢]leleK> ( Z )\j)"wlz-
|K|=k-1ij=1,...,N j=1,....k
Also (1.1) gives, with the aid of (1.7),
?
YD islwst = (5'121‘1' +q/\) Jwl?.

|[J1=ki<q i<q

Let 87 (resp. 0”) be the (1,0) derivatives tangential (resp. normal) to or(z).
It is clear from (1.7) that for suitable ¢

(1.9) 00¢ > 6718707r — cdz” Adz" + Ndz A dz.
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Let {Ny} denote the k-dimensional planes of CV. We then have

(1.10) Z A; = inf trace (00¢|n,)
j=1,...k *
> i}{flf trace (5_15’677‘ —cdz” Adz” + Adz A dz)
k
> (kA—ke)+671 ) py
j=1,....k

Thus for the new X defined by X' = (k — ¢)A — ke, we have

(1.11) Z =6 pi—gA =Nt ) u,>x
j=1,...q j=q+1,....k
where the last inequality follows from the second condition in (1.1). ]

Here is our main result:

THEOREM 1.2: Let W be a wedge of CV defined by r; < 0j = 1,...,m in
a neighborhood of a point z, € OW, and assume (1.1) be fulfilled for a conve-
nient orthonormal system of (1,0)-forms {w;} = {w1,...,wq} with O |sw~r C
TWO(GW N\ R) and whose coefficients belong to C*(8W) N C*(8W \ R) and
have bounded first and second derivatives. Then there exists a fundamental sys-
tem of neighborhoods {U} of 2, such that for any O-closed form f of degree
k > g+ 1 with C°(W NTU) coefficients, there is a form u of degree k — 1 with
C>(W N U)-coefficients, which solves the equation du = f.

2. L? estimates and proof of Theorem 1.2

For a real positive function ¢, we define Li(W) to be the space of functions on
W which are square integrable in the measure e~#dV (dV being the Euclidean
element of volume). We denote by |} - ||4 the corresponding norm. We denote
by L2 (W)" the space of (0, k)-forms with coefficients in L2 3(W). In a basis {w;}
they are written as f = E| =k fo@y where 3" denotes summation over ordered
indices and where w; = @;, A--- Aw;,. We denote by (¢;;) the matrix of the
Hermitian form 83¢. (We assume that the basis {w} is chosen as a completion of
the system {w'} in which (1.1) and hence (1.5) hold.) We introduce also another
function ¢ > 0, and consider the complex of closed densely defined operators

(2.1) L3132 Wyt S 3wk,
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We denote by 0% the adjoint of 8 and define the operator b, (-) = €?8,,(e7?).
We have, for f € C®(W)¥,

(2.2) Fr=— Y Z 6., (fiK) @K
|K|=k~1j=1,.
Z Z ¥ fik By, YK + e YRy,
|K|=k—1j=1,....N

5f=z Y 8.,(f1)@; Ay + Ry,

[J]=k j=1,....N

where Ry are errors which involve products of the f;’s by derivatives of
coefficients of the w;’s. On the other hand we have

(2.3)

Iy Z R wkllf =
|K|=k-1j=1,.
Z Z / w. fzK w,(f]K) V

|K|=k—1ij=1,...,N

”Z Z aw, f.] wJ/\wJ||¢_
|J|=kj=1,.
Z Z / w, flK i(ij)dV

|K|=k-1ij=1,.
Y = / ~#18,,(f2)dV.
|Jl=kj=1,.
It follows that

S OY [ et BT i () AV

|K|=k—1ij=1,...,N
(2.4) +Z > / e=?|8., (f7)|2dV
|J|=ki=1,....N
< 3||8*f”¢—2¢ + 2”3f||¢ + 01||f||¢ + 3|||31/J|f”¢ Vf € CR(W)F,
where 0, can be estimated by the sup-norm of the derivatives of the coefficients

of the w;’s over the support of f. (We shall also use the notation o, as for the
second derivatives.) We have the commutation relations

(2.5) [Oui> ;] = 8,006 + Z ho Z " O
—¢]1+ZC 6w Z awha
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where the cf;’s involve the antiholomorphic derivatives of the coefficients of the
w;’s. We apply (2.5) to the whole of the terms in the first sum on the left of (2.4)
and to the terms with j < g in the second. We obtain

CCED D oS i o

|K |=k—1ij=1,..., |7|=ki=1,...,
( Z Z / ¢]zfsz]KdV Z Z/ ¢¢JJ|fJ| dV)
|K|=k—1ij=1,..., |J|=ki<q
(X S+ Y S o, 1012
|Jl=ki<q [J|=kj>q+1

/

+( Z Z /Se_¢‘](acui¢)ﬁjfinjKdS
N

K [=k—1ij=1,..

- Z Z/ e~ J(8., ;O n]lfJ|2dS) + Error,

[J|=ki<q

where the error term has the estimate

(27) |Brror| < (Z’meni Y IléwijIIZ) (@ + alIfI2.

|J=kji<q J1=ki>q+1
Note that n’ = 0 whence Y’ 3 J5-dS = 0. Moreover, since n = —)—Ijggi)l’ then
|J|=ki<q
eo ¥ % [as= ¥ 5 [ tnn i@ s
|K|=k-1ij=1,...,N IK)=k—1ij=1,...,N

-y 1Y mhaflE)eS 20
|K|=k—1 N
We did not use any property of ¢ so far. For the sequel, however, we need our
main hypothesis. We assume that (1.5) is fulfilled for any z € W~ S, apply for
w = (fs)y, and get

(2.9)
S8 [ eteutwhuav =X [ etonlnalav > N
|K|=k-1ij=1,...,N |J|=ki<q

By combining (2.7), (2.8), (2.9), we obtain the following estimation for the first
line of (2.6):

(2.10) D RE D Z > AR - (02 + ) liFE-

|K|=k=1ij=1,..N  [J|=kj=1,.
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By plugging together (2.4) and (2.10) we get
(2.11)
MIFIG < 310" FlI5 -2y + 20107115 + (o7 + o)l £1I5 + 3lIIB¢IF1I5 VS € Ce(W)E.

We fix now a compact subset K CC W that we may assume in the form K =
{¢# < n} for some n, and choose ¢ according to [6, Lemma 4.1.3] (in particular
we can choose 1| = 0). This ensures density of C2° into L?-forms. Thus now
(2.11) holds for L? instead of C2° forms. We replace the above ¢ by

x(¢) + (3 + 0 + 02)I2[%,

where y is a positive convex function of a real argument ¢ which satisfies:

x(t) =0, for t <mn,

. P2 +e¥ -
x(t) > { .:g))q}M—;re——ll, for t > n.

(2.12)

Under this choice of ¢ and ¥ we conclude, for k > ¢+ 1,
(2.13) 15—y <N0* Fli3-20 + 1OF1I5 ¥F € D3N DE.,

where Dg and D'g,‘ are the domains in Lg(W)"c of 8 and &%, respectively. More-
over, for any compact subset K CC (2, we may choose ¢)|x = 0 and ¢|x =
(3 + 02 + 02)|2|2. To conclude the proof of Theorem 1.2, we need some further
preparation which consists in a rearrangement of (2.13).

PROPOSITION 2.1: Let W be bounded and endowed with an exhaustion function
satisfying (1.5) for any z € W~ S. Then for k > q -+ 1, for a suitable constant
¢, and for any form f € Lzlzlz(W)k with 0f = 0, there exists u € LE[ZP(W)"_l
such that

(2.14) Ou=f,0u=0) [{ullZ,; <IIfI12p-

Cf. Appendix for the Proof.
Let || - ||(sy denote the norm in the Sobolev space H*(W). Let W¢ :=
{z € W : dist(z,6W) > €}.

PROPOSITION 2.2: Let W be bounded and endowed with an exhaustion function
satisfying (1.5). Then for k > g+ 1 and for any f € C®°(W)* with 8f = 0, there
is u € C®(W€)¥~! such that for any s and for suitable M, we have

_ - M,
(2'15) (au:f’ 0 u=0), ”u”(s-H) < gs_,,_lnf“(s)
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(the norms of u and f being evaluated over W€ and W respectively).
Cf. Appendix for the Proof.

End of Proof of Theorem 1.2: We suppose that W is locally defined at z5 = 0
by —21 4+ h < 0 and then define W, by —z1 + k < 7% /2 for 0 < n < 1. Clearly
we have on a neighborhood of z,

(2.16) {z € CN:dist(z, W) < ¥} C W, C {z € CV: dist(z, W) < 0" /2}.

We consider the sequence of domains W, NU, DD W41 NUp4 DD -+ DD
W N U where U, (resp. U) is the sphere with center z, and radius p + 7% /2
(resp. p) for small p. We note that (1.5) is fulfilled by the exhaustion function
¢ = —log(§ + %" /2) + N|z|® +log(—|2 — 20> + (p+1?" /2)?). Thus we can apply
(2.15) with the pair W, W€ replaced by W, NU,,, W,,41 NU,41. It is then easy
(cf. Appendix) to find a sequence of approximate solutions on the W,, NU,, which
converge in W N U to a true solution of Ju = f. i

3. Appendix

For the convenience of the reader we collect here the proofs of Proposition 2.1
([6, Prop. 4.4.1], Prop. 2.2 ([6, Prop. 4.2.4]) and the argument of Dufresnoy [3].

Proof of Proposition 2.1: Let ¢ be an exhaustion function which satisfies (1.5) on
the whole W and set K, := {¢ < n} for n large. Take ¢ = 9,, with ¢|x, =0 and
X = Xn convex with x(tf) > 0Vt € R, x(t) = 0Vt < n and which verifies (2.12).
We also suppose x{¢) — 2¢ > 0 and consider x(¢) + c|2|? where ¢ is an uniform
upper bound for 2+ 6% + o3 on the whole W. Note that x(¢) + c|z|> = ¢|z|? over
K,.

2Let fwe—c{zlzlfli’dV < 1 (hence f € L)2((¢)+c|z|2—¢(W)k)' For any g €
Ly@)+clziz—y(W)" we have

_ - 2
BY) 1 Dxyretir—sl? < /We 2x(9)=clsl*+29) g 2qy

< / e~ X(@)=clzl*|g 12y
w

< !|5*9||§(¢)+c|z|2—2¢ + ||5g||i(¢)+c|z|2,

where the last inequality follows from (2.13). It is immediate to see, because of
8f = 0, that in fact

(s Dx(@)+elzi2—v < 110*9llx(g)+clzl?—2¢-



Vol. 115, 2000 SOLVABILITY OF THE § PROBLEM 329

It follows that the mapping 0*g — (f, 9)x(4)+clz|2—y 1S Tepresented by 8*g —
(u, 3 9)x(¢)+c|z|2—2¢, for a convenient u which can be chosen in the image of o*
thus verifying 8*u = 0 and with |[¢llx(¢)+clzi2—2¢ < 1. By approximating W
by the sequence K, taking a sequence of solutions » = u,, and remarking that
Xn{¢) = 0 and 9, = 0 on K, we can find a subsequence u,; which converges to
a form u which fulfills all requirements in the statement. |

Proof of Proposition 2.2 (Dufresnoy [3]): Let x° =1 on W€, supp x C We/2 1t
is easy to find such a smooth x¢ with the property

(3.2) [0%x¢| < % Yo € NV,

Here we have used the notation 0% = 821 - ... - 92~. If we apply (2.4) to the
(compactly supported) form 9%(x‘u) and with ¢ = 0, 1 = 0, we get

(33)  [18*( Iy < elll8* (¢ w)lifg) + 10@*x W[y + 119" (0*x“u)llfy))

(where || - [|(o) denotes the norm in H® = L? and 8% (L?)* — (L?)*').
In particular, suppose that u is a solution of (Ju = f,0*u = 0) satisfying
[[ullefz2 < || flejzi2 according to Proposition 2.1. (Here 9*: Lglzlg" — Lg[zlz"_l.)
By combining (3.2) with (3.3) for this particular choice of 4, and observing that
W being bounded, the Lglzlﬁ (W) and L?(W)-norms are equivalent, we get at
once the conclusion. |

Outline of the approximation argument in the end of the proof of Theorem 1.2:
Let W, D> W, 41 DD --- DD W be a sequence of domains satisfying (2.16). Take
a sequence of spheres U, DD U,41 DD --- with center zp and radius p + 5% /2
and write again W, instead of W, NU,,. Let f € C®(W)* satisfy 8f = 0. Extend
f to f such that

|8f] ll(s) < M,,n"% on W, for any r, s and for suitable M,..
This is clearly possible because 8 f = 0 on W and because
W, C {z: dist(z, W) < n*" /2}.
According to Proposition 2.2, there is a solution h, on W, ;; of

{ oh, = Of
wllgs1) < Mo(n® ™)== H18 (o)
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(due to W,y C {2z : dist(z,0W,) > n2"+1/2}). Solve on W, the equation
Ou, = f — h1, and, inductively on W, 5,

3uu+1 =h, - hu+17
with the estimates

v+2, _
luvsallss2) < Mapr () Dby = Bygallsrr)

< My )R M
1
< M;s—z—; (r, v large).

Therefore Yoo , u, converges in C*(W) and solves on W:

5(§:uu) = f—limh, = f.
v=1
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